Publications

Patent

  1. Li, M., Weng, Y., Wong, T. N., Tan, M. J., & Tan, J. S. (2024). Apparatus and Method For Concrete Additive Manufacturing. SG Patent 11202303070S
  2. Li, M., Weng, Y., Wong, T. N., Tan, M. J., & Tan, J. S. (2022). Apparatus and Method For Concrete Additive Manufacturing. WO Patent No. WO2022/124982 A1.

Licensed Technical Disclosure

  1. Weng, Y., Li, M., Wong, T.N., Tan, M.J. 3D printable concrete from locally available off-the-shelf products, NTU Ref: 2022-061. Licensed to Chip Eng Seng Pte Ltd.
  2. Li M., Liu Z., Weng, Y., Lu B., Ting G. H., Lim J. H., Liu Z., Tay Y., Tan K. Q., Quoc N. V., Wong T. N., Tan M. J. 3D Concrete Printed Straight Partition Logo Wall For Chip Eng Seng Corporation Ltd, NTU Ref: 2021-248. Licensed to Chip Eng Seng Pte Ltd.
  3. Li M., Liu Z.,Weng, Y., Lu B., Ting G. H., Lim J. H., Liu Z., Tay Y., Tan K. Q., Quoc N. V., Wong T. N., Tan M. J. 3D Concrete Printed Curvy Partition Logo Wall For Chip Eng Seng Corporation Ltd., NTU Ref: 2021-249. Licensed to Chip Eng Seng Pte Ltd.
  4. Li, M., Weng, Y., Tay, Y.W., Wong, T.N., Tan M.J., Lie, L.T. Integrated large-scale 3D concrete printing robotics system and printing parameters, NTU Ref: 2020-087. Licensed to Chip Eng Seng Pte Ltd.
  5. Weng, Y., Li, M., Tan, M.J., Qian, S. Design printable fiber reinforced cementitious materials for large scale printing application, NTU Ref: 2019-309-19. Licensed to Chip Eng Seng Pte Ltd.
  6. Jeong, M.Y., Li, M., Weng, Y., Tay, Y.W., Wong, T.N., Tan, M.J. 3D printed reception table, NTU Ref: 2019-258. Licensed to Teambuild Construction Group.
  7. Jeong, M.Y., Li, M., Weng, Y., Tay, Y.W., Wong, T.N., Tan, M.J. 3D printed coffee table, NTU Ref: 2019-257. Licensed to Teambuild Construction Group.

Book Chapter & Conference Articles [*Corresponding Author]

  1. Yu, J., Weng, Y.*,Teng, F., Ye, J., Yu, K. and Yu, J.T. (2024). Prediction of the flexural strength of 3D printed SHCC beams based on a stochastic size-dependent model. 4th RILEM International Conference on Concrete and Digital Fabrication, Germany.
  2. Teng, F., Zhang, D., Li, H., & Weng, Y.* (2023). Feasibility study on reinforcement placement with a BIM-enabled collaborative robot system. 4th International Conference on 3D Construction Printing, Singapore. https://link.springer.com/book/10.1007/978-3-031-64269-2
  3. Ye, J., Weng, Y.*, Du, H., Li, M., & Yu, J. (2022). Feasibility of Using Ultra-High Ductile Concrete to Print Self-reinforced Hollow Structures. In: Buswell, R., Blanco, A., Cavalaro, S., Kinnell, P. (Eds) Third RILEM International Conference on Concrete and Digital Fabrication. DC 2022. RILEM Bookseries, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-031-06116-5_20
  4. Weng, Y., Li, M., Tan, M. J., & Qian, S. (2019). Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model. In J. G. Sanjayan, A. Nazari, & B. Nematollahi (Eds.), 3D Concrete Printing Technology, pp. 281-306. Elsevier.
  5. Weng, Y., Qian, S., He, L., Li, M., & Tan, M. J. (2018). 3D printable high performance fiber reinforced cementitious composites for large-scale printing. Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), 2018, pp. 19-24. https://doi.org/10.25341/D4B591
  6. Lu, B., Li, M., Lao, W., Weng, Y., Qian, S., Tan, M.J., & Leong, K.F., 2018. Effect of spray-based printing parameters on cementitious material distribution. In 2018 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2018, pp. 1989-2002.http://dx.doi.org/10.26153/tsw/17198
  7. Lim, J. H., Li, M., & Weng, Y. (2018). Effect of fiber reinforced polymer on mechanical performance of 3D printed cementitious material. Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), 2018, pp. 44-49. https://doi.org/10.25341/D43G6T
  8. Weng, Y., Lu, B., Tan, M. J., & Qian, S. (2016). Rheology and printability of engineered cementitious composites - A literature review. Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016), 2016, pp. 427-432. https://hdl.handle.net/10356/84448

Journal Articles [*Corresponding Author]

    2024

  1. Zhuang Z, Xu F., Ye J., Tong W., Chen Z., & Weng, Y.*. (2024). A 262-line Matlab code for the level set topology optimization based on the estimated gradient field in the body-fitted mesh. Structural and Multidisciplinary Optimization, 67(9), 171. https://doi.org/10.1007/s00158-024-03891-y
  2. Zhuang Z, Liu T, Tong W, Xu F, & Weng, Y.*. (2024). Enhancing topology optimization with colored body-fitted mesh using adaptive filter, dual re-meshing strategy, and OOP programming paradigm. Computer Methods in Applied Mechanics and Engineering. 432, 117350. https://doi.org/10.1016/j.cma.2024.117350
  3. Wang, X., Du, L., Liu, Z., Li, M., Weng, Y., Liu, Z., Tay, Y.W., Fan, Z., Wong, T.N., & Tan, M.J. (2024). 3D Cementitious composites printing with pretreated recycled crumb rubber: mechanical and acoustic insulation properties. Virtual and Physical Prototyping. 19(1), e2399787. https://doi.org/10.1080/17452759.2024.2399787
  4. Ye, J., Zhuang, Z., Teng, F., Yu, J., Zhang, D., Weng, Y.*, & Mechtcherine, V. (2024). Comparative environmental assessment of 3D concrete printing with engineered cementitious composites. Virtual and Physical Prototyping, 19(1), e2369249. https://doi.org/10.1080/17452759.2024.2369249
  5. Teng, F., Ye, J., Yu, J., Li, H., Weng, Y.*, & Mechtcherine, V. (2024). Development of strain-hardening cementitious composites (SHCC) as bonding materials to enhance interlayer and flexural performance of 3D printed concrete. Cement and Concrete Composites, 152, [105657]. https://doi.org/10.1016/j.cemconcomp.2024.105657
  6. Du, S., Teng, F., Zhuang, Z., Li, M., Li, H., & Weng, Y.* (2024). A BIM-Enabled Robot Control System for Automated Integration between Rebar Reinforcement and 3D Concrete Printing. Virtual and Physical Prototyping. 19(1). https://doi.org/10.1080/17452759.2024.2332423
  7. Ye, J., Yang, M., Yu, J., Dai, Y., Yin, B., & Weng, Y.* (2024). Size effect on flexural and fracture behaviors of 3D printed engineered cementitious composites: Experimental and numerical studies. 298, [117062]. Engineering Structures. https://doi.org/10.1016/j.engstruct.2023.117062
  8. Zhuang, Z., Xu, F., Ye, J., Hu, N., Jiang, L., & Weng, Y.* (2024). A Comprehensive Review of Sustainable Materials and Toolpath Optimization in 3D Concrete Printing. npj Materials Sustainability. 2 [12]. https://doi.org/10.1038/s44296-024-00017-9
  9. Zhuang, Z., Weng, Y., Xie, Y. M., Wang, C., Zhang, X., & Zhou, S. (2024). A node moving-based structural topology optimization method in the body-fitted mesh. Computer Methods in Applied Mechanics and Engineering, 419, 116663. https://doi.org/10.1016/j.cma.2023.116663
  10. Zhu, X., Zhang, M., Shi, J., Weng, Y., Yalçınkaya, Ç., & Šavija, B. (2024). Improving mechanical properties and sustainability of high-strength engineered cementitious composites (ECC) using diatomite. Materials and Structures, 57(1). 1-19. https://doi.org/10.1617/s11527-023-02283-w
  11. Zhang, D., Jiang, J., Zhang, Z., Fang, L., Weng, Y., Chen, L. and Wang, D., 2024. Comparative analysis of sulfate resistance between seawater sea sand concrete and freshwater desalted sea sand concrete under different exposure environments. Construction and Building Materials, 416, p.135146. https://doi.org/10.1016/j.conbuildmat.2024.135146
  12. 2023

  13. Teng, F., Li, M., Zhang, D., Li, H., & Weng, Y.* (2023). BIM-enabled collaborative-robots 3D concrete printing to construct MiC with reinforcement. HKIE Transaction. 30(1), 106-115. https://doi.org/10.33430/V30N1THIE-2022-0023
  14. Wang, Q.C., Yu, S.N., Chen, Z.X., Weng, Y., Xue, J. and Liu, X., 2023. Promoting additive construction in fast-developing areas: A Q-Methodology analysis of stakeholder perspectives on policy mixes. Developments in the Built Environment, 16, [100271]. https://doi.org/10.1016/j.dibe.2023.100271
  15. Li, M., Zhang, D., Wong, T.N, & Weng, Y.* (2023). Modelling and experimental investigation of fiber orientation in cast and 3D-printed cementitious composites. 2(3), [1603]. Mater Sci Add Manuf. https://doi.org/10.36922/msam.1603
  16. Ye, J., Teng F., Yu, J., Yu, S., Du, H., Zhang, D., & Weng, Y.* (2023). Development of 3D printable engineered cementitious composites with incineration bottom ash (IBA) for sustainable and digital construction. Journal of Cleaner Production, 422, [138639]. https://doi.org/10.1016/j.jclepro.2023.138639
  17. Ye, J., Yu, J., Yu, J., Yu, K., Wang, Y., & Weng, Y.* (2023). Tensile size effect of engineered cementitious composites (ECC): Experimental and theoretical investigations. Construction and Building Materials, 402, [133053]. https://doi.org/10.1016/j.conbuildmat.2023.133053
  18. Yu, J., Weng, Y., Yu, J., Chen, W., Lu, S., & Yu, K. (2023). Generative AI for performance-based design of engineered cementitious composite. Composites Part B:Engineering. https://doi.org/10.1016/j.compositesb.2023.110993
  19. Yu, J., Yu, K., Ye, J., Yu, J., Weng, Y., & Wang, Y. (2023). Probabilistic-based investigation on tensile behavior of engineered cementitious composites (ECC): a macro-scale stochastic model. Construction and Building Materials. 404, [133286]. https://doi.org/10.1016/j.conbuildmat.2023.133286
  20. Sun, G., Wang, Z., Yu, C., Qian, X., Chen, R., Zhou, X., Weng, Y., Song, Y. & Ruan, S. (2023). Properties and microstructures of 3D printable sulphoaluminate cement concrete containing industrial by-products and nano clay. Journal of Building Engineering, 73, [106839]. https://doi.org/10.1016/j.jobe.2023.106839
  21. 2022

  22. Li, M., Weng, Y.*, Liu, Z., Zhang, D., & Wong, T.N. (2022). Optimizing of chemical admixtures for 3D printable cementitious materials by central composite design. Mater Sci Add Manuf, 1(3), [16]. https://doi.org/10.18063/msam.v1i3.16
  23. Zhang, D., Tu, H., Li, Y., & Weng, Y. (2022). Effect of fiber content and fiber length on the dynamic compressive properties of strain-hardening ultra-high performance concrete. Construction and Building Materials, 328, [127024]. https://doi.org/10.1016/j.conbuildmat.2022.127024
  24. Zhang, D., Chen, B., Wu, X., Weng, Y., & Li, Y. (2022). Effect of polymer fibers on pore pressure development and explosive spalling of ultra-high performance concrete at elevated temperature. Archives of Civil and Mechanical Engineering, 22(4), [187]. https://doi.org/10.1007/s43452-022-00520-7
  25. Zhang, P., Hu, J., Yu, J., Weng, Y., & Zhang, D. (2022). Enhancing mechanical properties of engineering cementitious composite by defoamer. Construction and Building Materials, 339, [127670]. https://doi.org/10.1016/j.conbuildmat.2022.127670
  26. Kong, Y., Song, Y., Weng, Y., Kurumisawa, K., Yan, D., Zhou, X., Wang, S., & Ruan, S. (2022). Influences of CO2-cured cement powders on hydration of cement paste. Greenhouse Gases: Science and Technology. https://doi.org/10.1002/ghg.2141
  27. Li, H., Tu, H., & Weng, Y. (2022). Investigation on the quasi-static mechanical properties and dynamic compressive behaviors of ultra-high performance concrete with crumbed rubber powders. Materials and Structures/Materiaux et Constructions, 55(3), [104]. https://doi.org/10.1617/s11527-022-01904-0
  28. 2021

  29. Khajavi, S. H., Tetik, M., Mohite, A., Peltokorpi, A., Li, M., Weng, Y., & Holmström, J. (2021). Additive manufacturing in the construction industry: The comparative competitiveness of 3d concrete printing. Applied Sciences (Switzerland), 11(9), [3865]. https://doi.org/10.3390/app11093865
  30. Zhang, D., Zhang, Y., Dasari, A., Tan, K. H., & Weng, Y. (2021). Effect of spatial distribution of polymer fibers on preventing spalling of UHPC at high temperatures. Cement and Concrete Research, 140, [106281]. https://doi.org/10.1016/j.cemconres.2020.106281
  31. Weng, Y., Mohamed, N. A. N., Lee, B. J. S., Gan, N. J. H., Li, M., Jen Tan, M., Li, H., & Qian, S. (2021). Extracting BIM Information for Lattice Toolpath Planning in Digital Concrete Printing with Developed Dynamo Script: A Case Study. Journal of Computing in Civil Engineering, 35(3), 05021001.
  32. Weng, Y., Li, M., Zhang, D., Tan, M. J., & Qian, S. (2021). Investigation of interlayer adhesion of 3D printable cementitious material from the aspect of printing process. Cement and Concrete Research, 143, [106386]. https://doi.org/10.1016/j.cemconres.2021.106386
  33. Zhang, Z., Liu, S., Yang, F., Weng, Y., & Qian, S. (2021). Sustainable high strength, high ductility engineered cementitious composites (ECC) with substitution of cement by rice husk ash. Journal of Cleaner Production, 317, [128379]. https://doi.org/doi.org/10.1016/j.jclepro.2021.128379
  34. Weng, Y., Li, M., Wong, T. N., & Tan, M. J. (2021). Synchronized concrete and bonding agent deposition system for interlayer bond strength enhancement in 3D concrete printing. Automation in Construction, 123, [103546]. https://doi.org/10.1016/j.autcon.2020.103546
  35. 2020

  36. Lim, J. H., Weng, Y.*, & Pham, Q. C. (2020). 3D printing of curved concrete surfaces using Adaptable Membrane Formwork. Construction and Building Materials, 232, [117075]. https://doi.org/10.1016/j.conbuildmat.2019.117075
  37. Weng, Y., Li, M., Ruan, S., Wong, T. N., Tan, M. J., Ow Yeong, K. L., & Qian, S. (2020). Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. Journal of Cleaner Production, 261, [121245]. https://doi.org/10.1016/j.jclepro.2020.121245
  38. Zhang, D., Tan, K. H., Dasari, A., & Weng, Y. (2020). Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cement and Concrete Composites, 109, [103512]. https://doi.org/10.1016/j.cemconcomp.2020.103512
  39. Ruan, S., Zhu, W., Yang, E. H., Weng, Y., & Unluer, C. (2020). Improvement of the performance and microstructural development of alkali-activated slag blends. Construction and Building Materials, 261, [120017]. https://doi.org/10.1016/j.conbuildmat.2020.120017
  40. Liu, Z., Li, M., Weng, Y., Qian, Y., Wong, T. N., & Tan, M. J. (2020). Modelling and parameter optimization for filament deformation in 3D cementitious material printing using support vector machine. Composites Part B: Engineering, 193, [108018]. https://doi.org/10.1016/j.compositesb.2020.108018
  41. Lu, B., Zhu, W., Weng, Y., Liu, Z., Yang, E. H., Leong, K. F., Tan, M. J., Wong, T. N., & Qian, S. (2020). Study of MgO-activated slag as a cementless material for sustainable spray-based 3D printing. Journal of Cleaner Production, 258, [120671]. https://doi.org/10.1016/j.jclepro.2020.120671
  42. 2019

  43. Lu, B., Qian, Y., Li, M., Weng, Y., Leong, K. F., Tan, M. J., & Qian, S. (2019). Designing spray-based 3D printable cementitious materials with fly ash cenosphere and air entraining agent. Construction and Building Materials, 211, 1073-1084. https://doi.org/10.1016/j.conbuildmat.2019.03.186
  44. Weng, Y., Ruan, S., Li, M., Mo, L., Unluer, C., Tan, M. J., & Qian, S. (2019). Feasibility study on sustainable magnesium potassium phosphate cement paste for 3D printing. Construction and Building Materials, 221, 595-603. https://doi.org/10.1016/j.conbuildmat.2019.05.053
  45. Liu, Z., Li, M., Weng, Y., Wong, T. N., & Tan, M. J. (2019). Mixture Design Approach to optimize the rheological properties of the material used in 3D cementitious material printing. Construction and Building Materials, 198, 245-255. https://doi.org/10.1016/j.conbuildmat.2018.11.252
  46. Weng, Y., Li, M., Liu, Z., Lao, W., Lu, B., Zhang, D., & Tan, M. J. (2019). Printability and fire performance of a developed 3D printable fibre reinforced cementitious composites under elevated temperatures. Virtual and Physical Prototyping, 14(3), 284-292. https://doi.org/10.1080/17452759.2018.1555046
  47. Ruan, S., Qiu, J., Weng, Y., Yang, Y., Yang, E. H., Chu, J., & Unluer, C. (2019). The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cement and Concrete Research, 115, 176-188. https://doi.org/10.1016/j.cemconres.2018.10.018
  48. Lu, B., Weng, Y., Li, M., Qian, Y., Leong, K. F., Tan, M. J., & Qian, S. (2019). A systematical review of 3D printable cementitious materials. Construction and Building Materials, 207, 477-490. https://doi.org/10.1016/j.conbuildmat.2019.02.144
  49. Zhang, Z., Weng, Y., Ding, Y., & Qian, S. (2019). Use of genetically modified bacteria to repair cracks in concrete. Materials, 12(23), [3912]. https://doi.org/10.3390/ma12233912
  50. Sun, L., Wang, T. X., Chen, H. M., Salvekar, A. V., Naveen, B. S., Xu, Q., Weng, Y., Guo, X., Chen, Y., & Huang, W. M. (2019). A brief review of the shape memory phenomena in polymers and their typical sensor applications. Polymers, 11(6), [1049]. https://doi.org/10.3390/polym11061049
  51. 2018

  52. Weng, Y., Li, M., Tan, M. J., & Qian, S. (2018). Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model. Construction and Building Materials, 163, 600-610. https://doi.org/10.1016/j.conbuildmat.2017.12.112
  53. Weng, Y., Lu, B., Li, M., Liu, Z., Tan, M. J., & Qian, S. (2018). Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing. Construction and Building Materials, 189, 676-685. https://doi.org/10.1016/j.conbuildmat.2018.09.039
  54. Zhang, X., Li, M., Lim, J. H., Weng, Y., Tay, Y. W. D., Pham, H., & Pham, Q. C. (2018). Large-scale 3D printing by a team of mobile robots. Automation in Construction, 95, 98-106. https://doi.org/10.1016/j.autcon.2018.08.004
  55. 2016

  56. Wang, T., Aw, J. E., Salvekar, A. V., Weng, Y., & Huang, W. (2016). Advanced shape memory technology for product design, manufacturing and recycling. Materials China, 35(8), 613-621. https://doi.org/10.7502/j.issn.1674-3962.2016.08.08